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A Three-Dimensional Unconditionally Stable ADI–FDTD
Method in the Cylindrical Coordinate System

Chenghao Yuan and Zhizhang Chen

Abstract—An unconditionally stable finite-difference time-domain
(FDTD) method in the cylindrical coordinate system is presented in this
paper. In it, the alternating-direction-implicit (ADI) method is applied,
leading to a cylindrical ADI–FDTD scheme where the time step is no
longer restricted by the stability condition, but by the modeling accuracy.
In difference from the conventional ADI method, in which the alteration
is applied in each coordinate direction, the ADI scheme here performs
alternations in the mixed coordinates so that only two alternations in
solution marching are required at each time step in the three-dimensional
formulation. In difference from its counterpart in the Cartesian coordi-
nate system, the cylindrical ADI–FDTD includes an additional special
treatment along the vertical axis of the cylindrical coordinates to overcome
singularity. Theoretical proof of the unconditional stability is shown and
numerical results are presented to demonstrate the effectiveness of the
cylindrical algorithm in solving electromagnetic-field problems.

Index Terms—Alternating-direction-implicit (ADI) method, cylindrical
coordinate system, finite-difference time-domain (FDTD) method,
unconditional stability.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] has been
widely used in solving electromagnetic problems due to its capability
of precise predictions of field behaviors. By finite differencing
Maxwell’s equations, the field solutions at a current time step are
deduced from the field values at the previous time steps in a recursive
fashion. This recursive scheme can provide field information in both
time and frequency domains if the excitation is of large bandwidth.
The detailed theory and extensive applications are described in [2].

Although the FDTD is an effective method in solving electromag-
netic problems, there are inherent modeling constraints that limit
its applications to electrically small structures. One of them is the
Courant–Friedrich–Lecy (CFL) stability condition. It requires that a
time step be smaller than a certain limit to ensure numerical stability.
For a conventional cylindrical FDTD method [3], [4], the time step�t
has to satisfy the following CFL condition [3]:
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whereumax is the maximum phase velocity in the media being modeled
and�r, ��, and�z are the smallest spatial discretization steps in
the radial, angular, and vertical directions, respectively. Equation (1)
indicates that the time-step limit is related to the spatial steps, as well
as the medium constitutive parameters.

To remove the CFL constraint, unconditionally stable schemes
can be developed. To this end, the alternating-direction-implicit
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(ADI) FDTD method has recently been developed in the Cartesian
coordinate system [5]–[7]. In this paper, the extension of the method
to the cylindrical coordinate system is presented with addition of
a special singularity treatment for field components on the vertical
axis. Such a cylindrical ADI–FDTD method is particularly effective
for solving axis-symmetric structures such as cylindrical cavity
resonators. The analytical proof of the unconditional stability is shown
and numerical results are provided to validate the proposed cylindrical
ADI–FDTD method. Note that the three-dimensional (3-D) cylindrical
ADI–FDTD is developed in this paper for modeling general structures
that may require the presence of various different modes as the result
of discontinuities in the azimuthal or�-direction. The same ADI
principle can also be easily applied to the two-dimensional (2-D)
cylindrical FDTD technique for structures with body-of-revolution
(BOR) symmetry of [2, Ch. 12] leading to significant savings in
computational expenditures.

The paper is organized in the following manner. In Section II,
formulations of the proposed cylindrical ADI–FDTD method are
presented. In Section III, proof of the unconditional stability is
provided. In Section IV, the pertinent numerical results are showed.
Finally, in Section V, conclusions and discussions are made.

II. ADI–FDTD FORMULATIONS IN THE CYLINDRICAL

COORDINATE SYSTEM

In an isotropic lossless region with permittivity" and permeability
�, the six scalar equations that relate the components of electric field
E and magnetic fieldH in the cylindrical coordinate can be readily
obtained from the cylindrical Maxwell’s equation. For instance,
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When treated with the finite-difference scheme, the above equation
presents a singularity on ther = 0 because of the1=r term. As a result,
the cylindrical ADI finite-difference formulations have to be derived in
two separate situations: one for the field components off ther = 0 axis
and the other for the field components along ther = 0 axis.

A. ADI–FDTD Formulations for Field Components Off ther = 0 Axis

In this case, no singularity is present. The ADI principle, as described
in [6] and [7], can be directly applied to (2), resulting in (3) and (4),
shown at the bottom of the following page. The equations for the other
components can be obtained in a similar way.

In (3) and (4), both the right-hand side (RHS) and the left-hand side
(LHS) contain unknown field components. To solve them in a more
effective way, they are simplified by appropriate rearrangements and
substitutions, as described in [6]. For instance, one can obtain
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It forms a linear system of equations with a tri-diagonal coefficient
matrix that can be solved in an efficient way.

B. ADI–FDTD Formulations for Field Components on ther = 0 Axis

In this case, as mentioned earlier, direct numerical updating ofEz

from (2) is not feasible because of the1=r term. To circumvent the

difficulty, the following integral form of Maxwell’s equation in the time
domain is looked at and used:

c

H � d l = " �
s

@ E

@t
� d s (6)

whereC is a closed contour surrounding ther = 0 axis, andS is the
surface bounded by the contourC.

By using the closed circular path of radius�r=2 around ther = 0
axis, the following non-ADI explicit finite-difference equation forEz

at r = 0 can be obtained [4]:
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To obtain the ADI formulations, the above equation is split into two
sub time steps of computations as follows:
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TABLE I
SIMULATION RESULTSWITH DIFFERENTTIME STEPS

Again, they can be further simplified in the same way as described in
[6]. Equation (8a) then becomes
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Since (8b) is actually an explicit equation, there is no need to simplify it.
Ez can be updated directly with the fields components at the previous
time step.

III. A NALYTICAL PROOF OF THEUNCONDITIONAL STABILITY

OF THE PROPOSEDFDTD SCHEME

In the cylindrical coordinate system, six electric- and magnetic-field
components in the spectral domain can always be expressed as [8]
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whereBp(krr) is the appropriate Bessel function withkr, k�, and
kz being the spatial frequencies along ther-, �-, and z-direction,
respectively.

By substituting the above expressions into the ADI equations, one
can obtain two sets of matrix expressions for each of the two sub time
steps, respectively,

X
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or simply

X
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with � = �1 � �2.
By checking the magnitudes of the eigenvalues of�, one can de-

termine whether the proposed scheme is unconditionally stable; if the
magnitudes of all the eigenvalues of� are equal to or less than unity,
the proposed scheme is unconditionally stable; otherwise it is poten-
tially unstable [9].
� can be easily obtained by using a mathematical software,

such as Maple V [10]. However, direct finding of its eigenvalues is
very difficult. Therefore, an indirect approach is used with which
the ranges of the eigenvalues can be determined. In this case, the
Schur–Cohn–Fujiwa criterion (as described in [11]) is applied, where
the characteristic polynomial of�, with its roots being the eigenvalues,
is examined.

The Schur–Cohn–Fujiwa criterion states the following. If an
nth-order polynomial is expressed in the following form:
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and ann � n symmetric matrixC = [
ij ] being constructed with the
elements
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an�i+pan�j+p � ai�paj�p (15)

then the number of the roots ofF (z) with their magnitudes being less
than unity is equal to the number of positive eigenvalues of symmetric
matrixC; the number of the roots ofF (z)with their magnitudes being
larger than unity is equal to the number of negative eigenvalues of sym-
metric matrixC; the number of the roots ofF (z)with their magnitudes
being exactly unity is equal to the number ofzeroeigenvalues of sym-
metric matrixC.

By using Maple V, the characteristic polynomial of� is found to be
a sixth-order polynomial(n = 6)

Z
6 +B5Z

5 +B4Z
4 +B3Z

3 +B4Z
2 +B5Z + 1 = 0 (16)
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whereB3 = A3=A6, B4 = A4=A6, B5 = A5=A6, andB� (� =
3; 4; 5) are the coefficients of the characteristic polynomial. The ex-
pressions ofA� (� = 3; 4; 5; 6) are very long and are not listed due to
the limit of space.

Note that the coefficients of (16) are symmetric: the coefficient for
the sixth-order term is the same as that for the zeroth-order term, the
coefficient for the fifth-order term is the same as that for the first-order
term, and the coefficient for the fourth-order term is the same as that
for the second-order term. In other words,a6 = 1, a5 = B5, a4 = B4,
a3 = B3, a2 = B4, a1 = B5, anda0 = 1. The correspondingC ma-
trix is then a 6� 6 zero matrix and all of the eigenvalues ofC arezeros.
Consequently, all the roots of (16), which are also the eigenvalues of
�, reside on the unit circle on a complex plane with their magnitudes
being unity. Therefore, the proposed cylindrical ADI–FDTD is uncon-
ditionally stable. The CFL stability condition no longer exists with the
cylindrical ADI–FDTD method.

IV. NUMERICAL RESULTS

To numerically validate the ADI–FDTD scheme, two resonator
structures are computed. They are: 1) a cylindrical cavity and 2) a
cylindrical dielectric resonator. In both cases, simulations were run up
to 100 000 iterations with a time step of four times of the CFL limit
to see if the numerical solutions become divergent. No divergence
was observed. As a result, the unconditional stability is numerically
verified. Other aspects of the results are discussed below.

1) Circular Cylindrical Cavity: A simple cylindrical cavity res-
onator, whose analytical solutions are readily available [12], was com-
puted. The radius of the cavity resonator is 3.995 cm and the height is
7.910 cm. The cavity is discretized with a uniform grid of 16� 16� 15
alongr, �, andz, respectively. The electric fieldEz is recorded at the
grid point(8; 8; 10) in both methods.

Table I presents the simulation results with 5000 iterations for the
TE011 mode of the cavity with the increased time steps. Similar to
its counterpart in the rectangular coordinate system [6], the cylindrical
ADI–FDTD is found to have the increased errors with the increase of
the time steps.

To assess the CPU time saving with the ADI–FDTD method, the
cavity was also computed with the conventional cylindrical FDTD [3],
[4] with �t = �tCFL for the purpose of comparisons. By trial and
error, it was found that the computational accuracies can be at the
same level for both methods when�t = 4�tCFL is used with the
ADI–FDTD method. Consequently, to make the same of the actual
physical time simulated with both methods, 20 000 iterations were se-
lected with the FDTD and 5000 with the ADI–FDTD, respectively. The
CPU time for the two methods was then found to be different: 267.27 s
with the conventional FDTD and 66.32 s with the proposed method,
on an AMD-Athlon950 computer. Roughly speaking, a saving factor
of four was obtained with the proposed method in CPU time in this
case.

In terms of the computation memory, the memory required by the
cylindrical ADI–FDTD is almost double of that by the conventional
FDTD, a result similar to the one presented in [6] and [7].

2) Cylindrical Dielectric Disk Resonator Enclosed With a Cylin-
drical Cavity: The second example computed is a cylindrical dielec-
tric disk resonator enclosed with a cylindrical cavity (as shown Fig. 1).
The whole region is discretized with a uniform 15� 16� 16 mesh
and the time step was taken to be four times the CFL limit. The res-
onant frequency computed with different methods was compared, and
is shown in Table II. The resonant frequency obtained with the cylin-
drical ADI–FDTD scheme is found to agree well with those obtained
with other methods. The differences among all the different methods
are less than 1% this time.

Fig. 1. Geometry of the dielectric disk resonator.

TABLE II
RESONANT FREQUENCY OF THEDIELECTRIC DISK

OBTAINED WITH DIFFERENTMETHODS

V. CONCLUSIONS

A 3-D ADI–FDTD method in the cylindrical coordinate system free
of the CFL stability condition has been presented in this paper. The
Yee’s grid is used and the alternative direction implicit technique is ap-
plied to formulate the algorithm. Analytical proof of the unconditional
stability is shown and numerical simulation results are presented to val-
idate the method and to demonstrate its effectiveness. In the examples
computed, it is found that the cylindrical ADI scheme can achieve up to
four times of saving in CPU time in comparison with the conventional
FDTD method. However, the memory requirement is almost double of
that for the conventional FDTD method.
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Hybrid Planar NRD-Guide Magic-Tee Junction

Yves Cassivi and Ke Wu

Abstract—A new magic-tee circuit is proposed and developed, which is
based on the hybrid integration technology of a planar and nonradiative
dielectric (NRD) guide. The magic-tee junction combines an NRD-guide
T-junction with a microstrip T-junction. Furthermore, LSM -mode
radiators are introduced in the magic-tee circuit to reduce its resonance
problem. Measured results show that an isolation of 20 dB can easily be
achieved between the sum and difference ports.

Index Terms—Hybrid planar/nonradiative dielectric (NRD) guide
technology, magic-tee junction, millimeter-wave technology, mode
suppressor, nonradiative dielectric (NRD) waveguide.

I. INTRODUCTION

The nonradiative dielectric (NRD) waveguide is a promising tech-
nology for millimeter-wave applications. Various types of NRD-guide
components have been proposed and developed [1], including filters,
couplers, antennas, and hybrid planar NRD circuits [2]. In the latter
case, the NRD-guide is coupled to a planar structure, e.g., a microstrip
line, thereby combining and deploying the advantages of each
individual design platform. However, there are no NRD-guide-based
magic-tee junctions reported thus far in the literature. We propose a
magic-tee junction that uses an NRD-guide T-junction combined with
a microstrip T-junction.

In an NRD-guide, the two fundamental hybrid modes are theLSE10

andLSM10 modes. TheLSM10 mode is usually preferred because it
has a low-loss transmission property and it is the dominantTMy-type
mode, while theLSE10 mode is the secondTEy mode after the
LSE00 mode. Mode conversion between theLSE10 and LSM10

modes is omnipresent in NRD-guide bends [3] and misalignments
[4]. Yoneyamaet al. [3] have developed a useful relationship between
the radius of bend and the conversion loss for theLSM10 mode. This
analysis shows that, for a very sharp bend, theLSM10 mode can
almost completely be converted into itsLSE10 counterpart. For this
reason, the development of NRD-guide T-junctions [5]–[7] has led to
a topology that was optimized for the complete modal conversion of an
LSM10-mode input signal into two equalLSE10-mode signals at the
output ports. It was also shown that a T-junction splitting anLSE10
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Fig. 1. Hybrid planar/NRD-guide magic-tee junction topology.

mode into twoLSM10 signals is also feasible [7]. A useful property
of that type of NRD-guide T-junctions is the phase difference between
the two outputs. Due to the electromagnetic field configuration of the
LSE10 and LSM10 modes, anLSM10-to-LSE10-mode conversion
T-junction will have 180� phase difference between the two outputs,
but an LSE10-to-LSM10-mode conversion T-junction will have
0� phase difference between the two outputs. This is equivalent to
the E- andH-plane rectangular waveguide T-junctions. Since the
microstrip T-junction has an in-phase output signal, the NRD-guide
LSM10-to-LSE10-mode conversion T-junction is adopted for the
proposed magic-tee junction.

In this paper, a practical hybrid planar/NRD-guide magic tee is de-
scribed first and then analyzed. It is shown that a resonance problem
within the magic-tee junction appears when microstrip-to-NRD-guide
transitions are placed at the three NRD-guide ports of the magic tee.
Thus, anLSM10-mode load is introduced to resolve this problem. The
load does not affect theLSE10 mode and its construction is compatible
with the hybrid planar/NRD-guide technology. Simulation and mea-
surement results for the proposed magic tee are presented.

II. HYBRID PLANAR/NRD-GUIDE MAGIC-TEE JUNCTION

The proposed magic-tee junction topology consists of an NRD-guide
T- junction combined with a planar junction. The first option is to use
a microstrip T-junction that has in-phase outputs with an NRD-guide
LSM10-to-LSE10 T-junction. The second approach is to use an NRD-
guideLSE10-to-LSM10 T-junction with a slotline-to-microstrip-line
T-junction, the later having out of phase outputs. Only the first option
is studied in this paper.

A. Proposed Topology for the NRD Magic-Tee Junction

Fig. 1 shows the proposed topology. The new magic tee is composed
of an NRD-guideLSM10-to-LSE10 T-junction, which is used as a dif-
ference port, and a microstrip junction used as a sum port. The mi-
crostrip T-junction and NRD-guide T-junction are combined with two
microstrip-to-NRD-guideLSE10-mode transitions [8]. The two tran-
sitions are placed over the two output branches of the NRD-guide T-
junction. This arrangement produces two in-phaseLSE10-mode sig-
nals inside the output branches of the NRD-guide T-junction. Since
two such signals are in phase, they cannot produce anLSM10-mode
signal at the difference port, contributing to a good isolation of the sum
and difference ports. Similarly, the out-of-phaseLSE10-mode output
signals produced by the NRD-guide T-junction generate a virtual short

0018-9480/02$17.00 © 2002 IEEE
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