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Short Papers

A Three-Dimensional Unconditionally Stable ADI-FDTD  (ADI) FDTD method has recently been developed in the Cartesian

Method in the Cylindrical Coordinate System coordinate system [5]-[7]. In this paper, the extension of the method
to the cylindrical coordinate system is presented with addition of
Chenghao Yuan and Zhizhang Chen a special singularity treatment for field components on the vertical

axis. Such a cylindrical ADI-FDTD method is particularly effective

Abstract—An unconditionally stable finite-difference time-domain for solving axis-symmetric structures such as cylindrical cavity
(FDTD) method in the cylindrical coordinate system is presented in this resonators: The analytical pro‘?f of the un.condltlonal stability is §hoyvn
paper. In it, the alternating-direction-implicit (ADI) method is applied, ~and numerical results are provided to validate the proposed cylindrical
leading to a cylindrical ADI-FDTD scheme where the time step is no ADI-FDTD method. Note that the three-dimensional (3-D) cylindrical
longer restricted by the stability condition, but by the modeling accuracy. ADI-FDTD is developed in this paper for modeling general structures
In difference from the conventional ADI method, in which the alteration 54 may require the presence of various different modes as the result

is applied in each coordinate direction, the ADI scheme here performs . S . . . .
alternations in the mixed coordinates so that only two alternations in of discontinuities in the azimuthal op-direction. The same ADI

solution marching are required at each time step in the three-dimensional principle can also be easily applied to the two-dimensional (2-D)
formulation. In difference from its counterpart in the Cartesian coordi-  cylindrical FDTD technique for structures with body-of-revolution

nate system, the cylindrical ADI-FDTD includes an additional special (BOR) symmetry of [2, Ch. 12] leading to significant savings in

treatment along the vertical axis of the cylindrical coordinates to overcome computational expenditures

singularity. Theoretical proof of the unconditional stability is shown and P . P . i . .
numerical results are presented to demonstrate the effectiveness of the 1he paper is organized in the following manner. In Section II,

cylindrical algorithm in solving electromagnetic-field problems. formulations of the proposed cylindrical ADI-FDTD method are
Index Terms—Alternating-direction-implicit (ADI) method, cylindrical pres_ented. In Sgctlon I, proof of the unpondltlonal stability is
coordinate system, finite-difference time-domain (FDTD) method, Provided. In Section 1V, the pertinent numerical results are showed.

unconditional stability. Finally, in Section V, conclusions and discussions are made.

II. ADI-FDTD FORMULATIONS IN THE CYLINDRICAL

|. INTRODUCTION
COORDINATE SYSTEM

The finite-difference time-domain (FDTD) method [1] has been . . ) ) L .
widely used in solving electromagnetic problems due to its capabilityIn an .|sotrop|c Iosslgss region with permittivityand permeabﬂ@ )
of precise predictions of field behaviors. By finite diﬂerencindlgé' the six scala}r e_quatlc_)ns that n_elat(_e the components of electnc_fleld
Maxwell's equations, the field solutions at a current time step a and magnetic field in the cylindrical coordinate can be readily

deduced from the field values at the previous time steps in a recursﬂ/tétalned from the cylindrical Maxwell’s equation. For instance,

fashion. This recursive scheme can provide field information in both 9B. O(rH,) OH,
time and frequency domains if the excitation is of large bandwidth. Sor T o oo (2)
The detailed theory and extensive applications are described in [2]. '

Although the FDTD is an effective method in solving electromagwhen treated with the finite-difference scheme, the above equation
netic problems, there are inherent modeling constraints that linpitesents a singularity on the= 0 because of the/r term. As a result,
its applications to electrically small structures. One of them is thfe cylindrical ADI finite-difference formulations have to be derived in
Courant—Friedrich—Lecy (CFL) stability condition. It requires that &wo separate situations: one for the field components off the0 axis
time step be smaller than a certain limit to ensure numerical stabilighd the other for the field components alongthe 0 axis.
For a conventional cylindrical FDTD method [3], [4], the time st&p

has to satisfy the following CFL condition [3]: A. ADI-FDTD Formulations for Field Components Off the= 0 Axis

1 In this case, no singularity is present. The ADI principle, as described
\/ N\ 2 D) \? in [6] and [7], can be directly applied to (2), resulting in (3) and (4),
Umax * <_) + <—) + <_) shown at the bottom of the following page. The equations for the other
Ar Ar-Ad Az components can be obtained in a similar way.
In (3) and (4), both the right-hand side (RHS) and the left-hand side
HS) contain unknown field components. To solve them in a more
ective way, they are simplified by appropriate rearrangements and
Ibstitutions, as described in [6]. For instance, one can obtain

At < Atcrr, =

whereumax is the maximum phase velocity in the media being model
andAr, A¢, and Az are the smallest spatial discretization steps i
the radial, angular, and vertical directions, respectively. Equation
indicates that the time-step limit is related to the spatial steps, as we

as the medium constitutive parameters. ) )
To remove the CFL constraint, unconditionally stable schemes U 9 "t i1/ { ) 1
can be developed. To this end, the alternating-direction-implicit  — Li-zop-Ar2 EZ ’ <7 +1j,k+ 5)
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= E" <l J. k4 1) 4 L difficullty,. the following integral form of Maxwell’'s equation in the time
2 2-e-1-Ar domain is looked at and used:

_ 1) wf. 1 1 "
|:<L+_ H;<l+_*]k+_>_<l__> — - " OF
2 2 2 2 fH.dl:g-/%-(l? (6)

L. 1 1
.H¢’ <Z'_§7]7 I‘+2>:|
where(' is a closed contour surrounding the= 0 axis, andS is the
Ty Ar Ao surface bounded by the contodit
By using the closed circular path of radids /2 around the: = 0
_ {Hﬁ <Z it 1 1) _ g <i7 i 1 7’ 1)} axis, the following non-ADI explicit finite-difference equation fér.

2’ 2 2 atr = 0 can be obtained [4]:
At?
T diieep-AzAr ndL oy — Em i by 4 A ety (1
1 1 1 EZ (07‘]’ k) EZ (07-]7 ]‘.)_I_(":Ar H¢, 27 ]7 I‘ -
1 wf. 1 . ) . Lo -
—li—5 ) {E{i- 50 k+1 To obtain the ADI formulations, the above equation is split into two

sub time steps of computations as follows:

1
-£: (i-5.0.0))|. ©)
. S prO(0, =B, . )+ o H O <17 J: ")

It forms a linear system of equations with a tri-diagonal coefficient £+ Ar 2

matrix that can be solved in an efficient way. for the first sub time-step (8a)

and
B. ADI-FDTD Formulations for Field Components on the- 0 Axis . At
P ETHN0, 4, k) =ET2(0, j, k>+% HyT (1’ ) k)
- Ar

In this case, as mentioned earlier, direct numerical updating.of
from (2) is not feasible because of thgr term. To circumvent the for the second sub time-step (8b)

prr/ (z i k+ %) - E! (z Jk+ %)

At/2
. 1 y n+(1/2) { . l - 1 . l / n+(1/2) . l : l
~ 1 <z—|—2> Ar H¢ Z+27],A,+2 7 3 Ar H¢ i 2,],k+2
T i Ar Ar
2 2 2 2 . ) . e
- g at the first half time step (i.e., at the + 1/2)th time step)
®3)
and
1 . 1
E?Jrl iv ja L" + o - ?+(1/2) L, J< k + Y
2 2
At/2
iyl ognrary (0L L SN A a1 ]
1 <t—|—§)~Ar-H¢ L+§,‘],k+§ -{i—5 “Ar-Hj 1,—5,1,]4,—1—5
g-i-Ar Ar
1 1 1 1
Hr ! <i, j+§§ k+§)—H;?+1 <,’, j_§’ k+5>
— Ao = at the second half time step (i.e., at the+ 1)th time step)

(4)
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TABLE |
SIMULATION RESULTSWITH DIFFERENT TIME STEPS
ADI-FDTD FDTD
Analytical At Resonant Relative Resonant Relative

solution frequency error frequency error
(Gr2) (GHZ) (%) (GHZ) )
Atcrr 4.931 -0.38% 4.969 +0.38

4.950 4A1crL 4.960 +0.21 N/A N/A
8AtcrL 4.920 -0.60 N/A N/A

12At¢r; 4916 -0.68 N/A N/A

Again, they can be further simplified in the same way as described inBy substituting the above expressions into the ADI equations, one
[6]. Equation (8a) then becomes can obtain two sets of matrix expressions for each of the two sub time
steps, respectively,

At? (172 . At?
_S-M,-Arﬂ E; (/)<1"]’ k)+<1+5-,u,-Ar2) XA/ AL x (11)
- BT, k) XM = Ay xR (12)
n . At W (1. or simply
=FE’0,7j, k ——H =, 7.k
200, k) + ¢<2/J )

X" =A- X" (13)

At? 1. 1.
_—5.#.A71.Az |:Er <§7]w k+1>—E7 <§,], k>:| (9) With]\:"&l'[\g.
By checking the magnitudes of the eigenvalues\pbne can de-
Since (8b) is actually an explicit equation, there is no need to simplify termine whether the proposed scheme is unconditionally stable; if the
E = can be updated directly with the fields components at the previongnitudes of all the eigenvalues.dfare equal to or less than unity,

time step. the proposed scheme is unconditionally stable; otherwise it is poten-
tially unstable [9].
Il. ANALYTICAL PROOF OF THEUNCONDITIONAL STABILITY A can be easily obtained by using a mathematical software,
OF THE PROPOSEDFDTD SCHEME such as Maple V [10]. However, direct finding of its eigenvalues is

N . . . . very difficult. Therefore, an indirect approach is used with which
Inthe cylln(_jrlcal coordinate sys_tem,5|x electric- and magnetlc-flelﬁi|e ranges of the eigenvalues can be determined. In this case, the
components in the spectral domain can always be expressed as [8]Schur—Cohn—Fujiwa criterion (as described in [11]) is applied, where

the characteristic polynomial df, with its roots being the eigenvalues,

Eelicaro,m. e is examined.
= E'B, <kr <i + 1) A,,.) IPTAD ik kA The Schur-Cohn-Fujiwa criterion states the following. If an
: nth-order polynomial is expressed in the following form:
H7|:’ m+(1/2), k+(1/2) n )
— H"B (k l’A’T‘)BJIP("lJr(]/2))A¢‘E’7‘k:(k+(]/2))A: F(l) = Z a,;zl, ay, > 0 (14)
- r pAtvT - i=0
ol mt1/2). 1 (b (L/2))Ad gk kA and ann x n symmetric matrixC' = [,;] being constructed with the
= Eg By(kriAr)e’™™ e’ elements
H¢>|;L+(1/2), m, k+(1/2) minCi, 7)
1 AG ke (ba(1/9))A - Yig = Z (an—i+pan—j+p - ai—p“]—p) (15)
— HZBp <kr <i-|— 5) A,,,) eIPmAS jk:(k+(1/2))Az p=1
B then the number of the roots &%) with their magnitudes being less
=5, ket (1/2) v o than unity is equal to the number of positive eigenvalues of symmetric
= E" B, (kyiAr)ePmA? eik=(kH1/2)A2 matrix C'’; the number of the roots df( =) with their magnitudes being
" larger than unity is equal to the number of negative eigenvalues of sym-
lid1/2) m(1/2),k metric matrixC'; the number of the roots d( ) with their magnitudes

_ "B, <kr <i n 1) Ar) rlm (/286 ikoa: () being exactly unity is equal to the numberzefro eigenvalues of sym-
2 metric matrixC'.
By using Maple V, the characteristic polynomialdfis found to be

where B, (k,r) is the appropriate Bessel function with, k¢, and a sixth-order polynomialn = 6)

k. being the spatial frequencies along the ¢-, and z-direction,
respectively. 7254+ BsZ°+ B.Z' + BsZ* + B.Z° + Bs Z+1=0 (16)
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whereBs = As/Aq¢, By = Ay/A¢, Bs = As/As, andB, (« = Dielectric Disk
3,4,5) are the coefficients of the characteristic polynomial. The ex- 0.381cm /Filling, €=35.74
pressions ofd,, (o« = 3.4, 5,6) are very long and are not listed due to -

the limit of space. 1.524cm

Note that the coefficients of (16) are symmetric: the coefficient for

the sixth-order term is the same as that for the zeroth-order term, the
coefficient for the fifth-order term is the same as that for the first-order 0.381cm
term, and the coefficient for the fourth-order term is the same as that
for the second-order term. In other words,= 1, a5 = Bs,a4 = By, 2.59cm
a3 = Bs,as = B4, a1 = Bs, anday = 1. The corresponding’ ma-
trix is then a 6x 6 zero matrix and all of the eigenvaluesofirezeros
Consequently, all the roots of (16), which are also the eigenvalues of

0.762cm

Fig. 1. Geometry of the dielectric disk resonator.

A, reside on the unit circle on a complex plane with their magnitudes TABLE 1II
being unity. Therefore, the proposed cylindrical ADI-FDTD is uncon- RESONANT FREQUENCY OF THE DIELECTRIC DIsK
ditionally stable. The CFL stability condition no longer exists with the OBTAINED WITH DIFFERENT METHODS

cylindrical ADI-FDTD method.

Conventional | Finite Element | Nonorthogonal | Proposed ADI-
FDTD Method | Method (listed | FDTD Method | FDTD Method

in [13]) (13D

IV. NUMERICAL RESULTS

To numerically validate the ADI-FDTD scheme, two resonator
structures are computed. They are: 1) a cylindrical cavity and 2) & 3-516 GHz 3.51 GHz 3.53GHz 3.539 GHz
cylindrical dielectric resonator. In both cases, simulations were run up
to 100000 iterations with a time step of four times of the CFL limit
to see if the numerical solutions become divergent. No divergence V. CONCLUSIONS
was observed. As a result, the unconditional stability is numerically
verified. Other aspects of the results are discussed below.

1) Circular Cylindrical Cavity: A simple cylindrical cavity res-

A 3-D ADI-FDTD method in the cylindrical coordinate system free
of the CFL stability condition has been presented in this paper. The

onator, whose analytical solutions are readily available [12], was co ee’s grid is used and the alternative direction implicit technique is ap-

puted. The radius of the cavity resonator is 3.995 cm and the heighP Led to formulate the algorithm. Analytical proof of the unconditional
7.910 cm. The cavity is discretized with a uniform grid of @6 x 15 stability is shown and numerical simulation results are presented to val-
al.ongr @' and-, respectively. The electric fielf. is recorded at the idate the method and to demonstrate its effectiveness. In the examples

grid point(8, 8, 10) in both methods computed, itis found that the cylindrical ADI scheme can achieve up to
L ' qur times of saving in CPU time in comparison with the conventional

Table | presents the simulation results with 5000 iterations for tﬁ 5TD method. H h . tis al t double of
TEoq11 mode of the cavity with the increased time steps. Similar o method. However, the memary requirement is aimost double o
Ct%pt for the conventional FDTD method.

its counterpart in the rectangular coordinate system [6], the cylindri

ADI-FDTD is found to have the increased errors with the increase of
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Hybrid Planar NRD-Guide Magic-Tee Junction

Yves Cassivi and Ke Wu

Abstract—A new magic-tee circuit is proposed and developed, which is
based on the hybrid integration technology of a planar and nonradiative
dielectric (NRD) guide. The magic-tee junction combines an NRD-guide
T-junction with a microstrip T-junction. Furthermore, LSM,,-mode
radiators are introduced in the magic-tee circuit to reduce its resonance
problem. Measured results show that an isolation of 20 dB can easily be

P. H. Harms, J.-F. Lee, and R. Mittra, “A study of nonorthogonal FDTD
method versus the conventional FDTD technique for computing reso-
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(LSM, mode)

Fig. 1. Hybrid planar/NRD-guide magic-tee junction topology.

mode into twoLSM;, signals is also feasible [7]. A useful property
of that type of NRD-guide T-junctions is the phase difference between
the two outputs. Due to the electromagnetic field configuration of the
LSE{y, and LSM;y modes, anLSMy-to-LSE;,-mode conversion
T-junction will have 180 phase difference between the two outputs,
but an LSEo-to-LSMo,-mode conversion T-junction will have

0° phase difference between the two outputs. This is equivalent to
the E- and H-plane rectangular waveguide T-junctions. Since the

achieved between the sum and difference ports. microstrip T-junction has an in-phase output signal, the NRD-guide

LSMi¢-to-LSE;o-mode conversion T-junction is adopted for the
proposed magic-tee junction.

In this paper, a practical hybrid planar/NRD-guide magic tee is de-
scribed first and then analyzed. It is shown that a resonance problem
within the magic-tee junction appears when microstrip-to-NRD-guide
o ) ) o o transitions are placed at the three NRD-guide ports of the magic tee.

The nonradiative dielectric (NRD) waveguide is a promising techhys ani,SM,,-mode load is introduced to resolve this problem. The
nology for millimeter-wave applications. Various types of NRD-guidg, 54 does not affect theSE o mode and its construction is compatible
components have been proposed and developed [1], including filtef&y, the hybrid planar/NRD-guide technology. Simulation and mea-

couplers, antennas, and hybrid planar NRD circuits [2]. In the lattg[;;ement results for the proposed magic tee are presented.
case, the NRD-guide is coupled to a planar structure, e.g., a microstrip

line, thereby combining and deploying the advantages of each
individual design platform. However, there are no NRD-guide-based
magic-tee junctions reported thus far in the literature. We propose a
magic-tee junction that uses an NRD-guide T-junction combined with The proposed magic-tee junction topology consists of an NRD-guide
a microstrip T-junction. T- junction combined with a planar junction. The first option is to use
In an NRD-guide, the two fundamental hybrid modes ardtBE10  a microstrip T-junction that has in-phase outputs with an NRD-guide
andLSMo, modes. The.SM;o mode is usually preferred because i.SM;,-to-LSE,, T-junction. The second approach is to use an NRD-
has a low-loss transmission property and it is the domifiavit -type  guide LSE,-to-LSM o T-junction with a slotline-to-microstrip-line
mode, while theLSE:, mode is the second’E, mode after the T-junction, the later having out of phase outputs. Only the first option
LSEoo mode. Mode conversion between th&Ero and LSMio s studied in this paper.
modes is omnipresent in NRD-guide bends [3] and misalignments
[4]. Yoneyameet al. [3] have developed a useful relationship betwee
the radius of bend and the conversion loss forlti&1,, mode. This
analysis shows that, for a very sharp bend, H#M,, mode can Fig. 1 shows the proposed topology. The new magic tee is composed
almost completely be converted into iESE;, counterpart. For this of an NRD-guideL.SM;-t0-LSE1¢ T-junction, which is used as a dif-
reason, the development of NRD-guide T-junctions [5]-[7] has led ference port, and a microstrip junction used as a sum port. The mi-
a topology that was optimized for the complete modal conversion of arostrip T-junction and NRD-guide T-junction are combined with two
LSM;¢-mode input signal into two equélSE;,-mode signals at the microstrip-to-NRD-guiddLSE;,-mode transitions [8]. The two tran-
output ports. It was also shown that a T-junction splittingl&¥,  sitions are placed over the two output branches of the NRD-guide T-
junction. This arrangement produces two in-phhS&:,,-mode sig-
nals inside the output branches of the NRD-guide T-junction. Since
Ectho such signals are in phase, they cannot produceSvi,-mode
anal at the difference port, contributing to a good isolation of the sum

Index Terms—Hybrid planar/nonradiative dielectric (NRD) guide
technology, magic-tee junction, millimeter-wave technology, mode
suppressor, nonradiative dielectric (NRD) waveguide.

|. INTRODUCTION

Il. HYBRID PLANAR/NRD-GUIDE MAGIC-TEE JUNCTION

R. Proposed Topology for the NRD Magic-Tee Junction

Manuscript received July 31, 2001; revised January 8, 2002.
The authors are with the Poly-Grames Research Center,
Polytechnique de Montréal, Montréal, QC, Canada H3V 1A2 (e-maif

cassivy@grmes.polymtl.ca).
Digital Object Identifier 10.1109/TMTT.2002.803451.

and difference ports. Similarly, the out-of-phds&E;,-mode output
signals produced by the NRD-guide T-junction generate a virtual short
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